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a b s t r a c t

Early detection of cancer is the key to effective treatment and long-term survival. Lung cancer is one of the
most frequently occurring cancers and its early detection is particularly of interest. This work investigates
the feasibility of a combination of Adaboost (ensemble from machining learning) using decision stumps
as weak classifier and trace element analysis for predicting early lung cancer. A dataset involving the
determination of 9 trace elements of 122 urine samples is used for illustration. Kennard and Stone (KS)
algorithm coupled with an alternate re-sampling was used to realize sample set partitioning. The whole
dataset was split into equally sized training and test set, which were then reversed to yield a second oper-
ating case, we called them case A and case B, respectively. The prediction results based on the Adaboost
were compared with those from Fisher discriminant analysis (FDA). On the test set, the final Adaboost
classifiers achieved a sensitivity of 100% for both cases, a specificity of 93.8%, 95.7%, and an overall accu-
racy of 95.1%, 96.7%, for case A and case B, respectively. In either case, Adaboost always achieves better
Diagnostics performance than FDA; also, it is less sensitive to the composition of the training set compared to FDA
and easy to control over-fitting. It seems that Adaboost is superior to FDA in the present task, indicating
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. Introduction

About 25 elements are recognized as essential for human life.
ost of them are present in trace amounts but part of metal-

oenzymes and participate in biological functions, such as oxygen
ransport, free radical scavenging, structural organization of macro-

olecules, and hormonal activity, and are therefore essential for
he functioning of the cells [1,2]. For example, iron plays a role
n the growth of cancers and iron chelators have anti-proliferative
ctivity on cancer cell line [3]. As many different kinds of interac-
ions among various trace elements exist, for a healthy individual,
here always exists a dynamic balance (at optimum biological lev-
ls) which is responsible for numerous metabolic and physiological
rocesses in the human body [4]. The disorder of trace element

alance is often related to some pathologic conditions that lead to
any diseases. So, the studies on the relationship between trace

lements and various diseases are valuable and have attracted con-
iderable attention over the past two decades [5–15]. However,
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trace element analysis of urine can serve as a useful tool for diagnosing
actice.

© 2008 Elsevier B.V. All rights reserved.

such relationships are also quite complicated and are difficult to
explain very satisfactorily through the investigation of one or a few
trace elements. Therefore, the reliable, robust prediction of a certain
disease based on trace element analysis requires special methodol-
ogy, i.e., suitable chemometrics [16–18], to construct a classification
model for distinguishing healthy and unhealthy subjects.

Lung cancer is the second most common cancer in humans and
is the most common cause of cancer deaths in the world. The overall
5-year survival rate of patients with lung cancer is no greater than
14%, which is much lower than that for patients with cancers in
other organs, such as the bladder, breast, colon, cervix, and prostate
[19,20]. So, early detection of lung cancer is crucial for the successful
application of specific therapies to reduce mortality rate or to facil-
itate a full care. However, because early lung cancers or precancers
such as dysplasia and carcinoma in situ (CIS) are only a few cell lay-
ers thick (0.2–1 mm) and present few symptoms, they can be very
difficult to be visually detected by conventional diagnostic methods
such as medical imaging. In clinical practice, about 80% cases have

already evolved into the advanced stage when first discovered and
confirmed, accordingly losing the most suitable opportunity of sur-
gical treatment. Evidently, finding lung cancer as early as possible
has important clinical significance. Nowadays, it has been discov-
ered that lung cancer incidence is usually related to risk factors

http://www.sciencedirect.com/science/journal/07317085
http://www.elsevier.com/locate/jpba
mailto:chaotan1112@163.com
dx.doi.org/10.1016/j.jpba.2008.12.010
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hich range from behavioral, genetic, occupational, nutritional, and
ther. In the occurrence and development of lung cancer, changes of
ome trace elements in the urine can be detected, which conversely
eflect the status of human nutrition and metabolism. Based on this,
t is possible to predict early lung cancer or the risk of its occurrence
y the combination of trace element analysis and chemometrics.
oreover, compared to some newly developed techniques such as

uorescence and Raman spectroscopy [20–22], trace element anal-
sis may be more preferable in practice due to its lower cost and no
nvasion to a subject.

Focus in the present study is to show how Adaboost (an ensem-
le strategy from machining learning) using decision stumps as
eak classifier, coupled with trace element analysis of urine, can be

pplied to accurately predict early lung cancer. A dataset involving
he determination of 9 trace elements of 122 urine samples, among
hich 95 were taken from healthy adults and 27 from patients with

ung cancer, was used for illustration. Kennard and Stone (KS) algo-
ithm coupled with an alternate re-sampling was used to partition
he whole dataset into equally sized training and test set, which
ere then reversed to yield a second operating case (named case
and case B, respectively). On the test set, the prediction results

ased on Adaboost were compared with those from Fisher discrim-
nant analysis (FDA). It was exactly because of the failure of FDA
o provide a satisfactory classification that we had to explore new
ays, thereby leading to the introduction of Adaboost. The final
daboost classifiers achieved a sensitivity of 100% for both cases, a
pecificity of 93.8%, 95.7%, and an overall accuracy of 95.1%, 96.7%,
or case A and case B, respectively. In either case, Adaboost always
chieves better performance than FDA; also, it is less sensitive to
he composition of the training set compared and easy to control
ver-fitting. It seems that Adaboost is superior to FDA in the present
ask. These results confirm the benefits of the proposed method,
uggesting that integrating Adaboost and trace element analysis of
rine can serve as a useful tool of diagnosing lung cancer in clinical
ractice.

. Theory and algorithm

.1. Adaboost

A classification task is actually a classical learning problem,
hich can be formulated as a search for a good classi-
er/classification rule, h, using available data {xi, yi},i = 1,2, . . ., n.
ere x is a vector of m predictors, and y, which takes on the value
−1, 1}, indicates the class of the pattern associated to x. A classi-
er is called a weak classifier if its error rate is slightly better than
andom guessing and is called a strong classifier if it is very accurate.

In most cases, it may be difficult to achieve a satisfactory accu-
acy based on a single classifier [23]. In order to improve a weak
lassifier by stabilizing its decision, a number of techniques could
e used, for instance, noise injection [24]. Another approach is to
onstruct many weak classifiers instead of a single one and then
ombine them in some way into a powerful classifier. Recently a
umber of such combining techniques have been developed, among
hich, Adaboost is one of the most popular and effective algo-

ithms, formulated by Freund and Schapire [25]. The purpose of
daboost is to find a highly accurate classifier by combining many
eak classifiers, each of which may be only moderately accurate

26–28]. The main idea of Adaboost algorithm is to define, at each
tep (for each classifier), a specific probabilistic distribution of learn

atterns (the training set), depending on previous results. A weight

s assigned to each pattern. It is initialized to 1/N, and, at each step,
he weight of each misclassified patterns is increased (or alterna-
ively, the weight of each correctly classified example is decreased),
o that the new classifiers are concentrated on hard patterns. In this
iomedical Analysis 49 (2009) 746–752 747

way a sequence of training sets and classifiers can be trained. One
can therefore obtain the final decision, i.e., an ensemble classifier,
by a weighted majority vote.

From the point of computation, Adaboost consists of the follow-
ing steps:

1. Assign an initial weight to each sample of the original training
set.

w(1)
i

= 1/N, i = 1, 2, . . . , N

2. Do for t = 1 to T
(1) Train a weak classifier f(t)(x) based on re-sampling the

weighted training set. First, a special training set with
N samples is constructed by randomly re-sampling with
replacement from the original training set. The chance for
a sample to be picked is related to its weight. A sample with
a higher weight has a higher probability to be picked. Then,
the training set is used to train a weak classifier of “decision
stump”, as described later.

(2) Apply the f(t)(x) to the original training set. If a sample is
misclassified, its error err(t)

i
= 1, otherwise its error err(t)

i
= 0.

(3) Compute the sum of the weighted errors on the whole train-
ing set: err(t) =

∑N
i=1w(t)

i
err(t)

i
.

(4) Calculate the confidence index of the classifier f(t)(x),
i.e., ˛(t) = (1/2) ln [(1 − err(t))/(err(t))] on condition that
err(t) ≤ 0.5; otherwise, go to (1).

(5) Update the weights w(t+1)
i

= w(t)
i

exp [˛(t)err(t)
i

], i =
1, 2, . . . , N, in order to maintain a more reasonable
distribution over all training samples

(6) Re-normalize w(t+1)
i

so that
∑N

i=1w(t+1)
i

= 1.
(7) t = t + 1. If t < T, repeat steps (1–6); otherwise, stop and T =t − 1.

After T iterations, there will be T weak classifiers f (t)(x), t =
1, 2, . . . , T .

3. Construct the ensemble classifier f ∗ = sign[
∑T

t=1(˛(t)f (t)(x))],
through which an unknown sample can be classified.

In Adaboost, the weighted error (i.e., WeightedErr) on each
weak classifier is a key index. Freund and Schapire proved
that the training error of the ensemble classifier is at most
˘[2

√
err(t)(1 − err(t))], known as upper error Bound (ErrBound),

a useful index [29]. Thus, in this study, we used both WeightedErr
and ErrBound for analysis purpose.

2.2. Weak classifier algorithm

In this study, decision stump consisting of a one-level binary
decision tree with categorical or numerical class label, is used to
train all weak classifiers. Decision stump is defined as follows:

f (x; j, b, s) = s · sign(xj − b),

where s takes on the values {−1,1} and b takes on values as defined
below. A decision stump is specified by the parameters j, b and s.
It is easily seen that for fixed values of s and b, the decision stump
is a shifted step function that assigns x a label based on only the
jth predictor xj. There exist many candidates decision stumps (i.e.
combinations of s and b) for each predictor. Given a training set {xi,
yi}, i = 1, 2, . . ., n, we prepare a collection of decision stumps for each
predictor xj in the following manner.
Sort all unique values of the jth predictor xj as {x(j)i}, i = 1, 2, . . .,
nj, where nj is the number of unique values of the jth predictor. Note
that x(j)i is the jth predictor of the ith sample xi.

Find all mid-points between sequential pairs of points in this
sorted collection.
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(each consisting of 61 samples): a training set and an indepen-
dent test set; the former was used for constructing a classifier
48 C. Tan et al. / Journal of Pharmaceutical

For each mid-point (indicated by b), prepare two candidate deci-
ion stumps f(x; j, b, 1) and f(x; j, b, −1).

Finally, a total of
∑K

j=12(nj − 1) classifiers are prepared in step
3) for K predictors. So, one weak classifier in Adaboost can be
btained.

.3. Fisher discriminant analysis

Fisher discriminant analysis [30,31] is a linear dimensionality
eduction and classification technique, optimal in terms of maxi-
izing the separation between several classes. It determines a set

f projection vectors that maximize the scatter between the classes
hile minimizing the scatter within each class. A short mathemat-

cal description follows. Stacking the training data for all classes
nto a matrix X (n × m) and representing the ith row of X with the
olumn vector xi, the total-scatter matrix is

t =
n∑

i=1

(xi − xmean)(xi − xmean)T (1)

here xmean is the total mean vector whose elements correspond
o the means of the columns of X. Define Xj as the set of vectors xi
hich belong to the class j, the within-scatter matrix for class j is

j =
∑

xi ∈ Xj

(xi − xj,mean)(xi − xj,mean)T (2)

here xj,mean is the mean vector for class j. Let c be the number of
lasses, then

w =
c∑

i=1

Si (3)

s the within-class-scatter matrix, and

b =
c∑

j=1

nj(xj,mean − xmean)(xj,mean − xmean)T (4)

s the between-class-scatter matrix where nj is the number of pat-
erns in class j. In fact, the total-scatter matrix is equal to the sum
f the between-scatter matrix and the within-scatter matrix, i.e.
t = Sw + Sb. FDA attempts to seek an optimal discriminating vector

by maximizing the Fisher criterion:

(w) = wT SBw

wT SW w
(5)

It can be shown mathematically that in most cases the vector w
s equal to the eigenvector of the generalized eigenvalue problem

bw = �Sww (6)

here the eigenvalue � indicates the degree of overall separabil-
ty. Here, FDA is used as a reference algorithm. By projecting onto
irection w, an observation corresponding to a row (i.e., nine con-
entration values of a person) in Matrix X can be transformed into
scalar from a vector of m-dimension, and then classified only

ased on a threshold, which is determined to lie between means
f training data projected onto direction w.

.4. Sample set partitioning

It is well-known that, given a dataset, how to select a repre-
entative training set for training a prediction model/classifier, is

ery important. A test set is also needed to evaluate the perfor-
ance of the model. In the strictest sense, the evaluation is valid

nly if the test set has the same distribution as the training set,
s the samples ascribed to each class often present a certain dis-
ribution. In practice, whether in the training set or in the test,
iomedical Analysis 49 (2009) 746–752

samples from the same class should maintain the original distri-
bution as much as possible. Thus, in this study, an especial scheme,
i.e., Kennard and Stone [32–34] algorithm coupled with an alter-
nate re-sampling, is used to realize sample set partitioning. That
is, the KS algorithm is first used to rank each class of samples to
produce a sample sequence. Next, for each sequence, an alternative
re-sampling is applied to pick one sample of every two samples
into the training set while the remaining samples constitute the
test set, which we called case A. By this means, the whole dataset
is split into two equal parts with approximately the same distri-
bution. In order to observe the effect of sample partitioning on
Adaboost, we also exchange case A’s training set and test set to
generate case B. In this study, we consider both case A and case
B.

The KS algorithm is a well-known representative sam-
ple selection algorithm based on maximizing the minimal
Euclidean distances between already selected samples and the
remaining samples. Its selection rule consists of the following
steps:

(1) Select the two most distant samples using the Euclidean dis-
tance measure.

(2) Store the shortest Euclidean distances in a distance list with the
corresponding sample number for each remaining sample.

(3) Select the sample with the maximum distance from the shortest
distances list.

This procedure is repeated until an expected number of samples
are selected, i.e., the total number of samples in our case.

3. Experiment

3.1. Sampling and chemical analysis

The dataset used in this study was taken from the work of Ms.
Chen D. (Shenyang Pharmaceutical University in China) [35,36].
Here, a brief introduction was provided. It consists of two groups
of samples; one is controlled (healthy) group from 95 healthy per-
sons aged 34–81 while the other is patient (cancer) group from
27 lung cancer patients aged 34–81. For each subject, 50 ml of
early morning urine samples was collected. Before analysis, all the
urine samples were stored in polyethylene bottles at the tempera-
ture of −18 ◦C. The urine samples were digested with a mixture of
HNO3–HCIO4–H2O2 (10:6:1, v /v) on the heating board of 140 ◦C
after a overnight pre-digestion, and then diluted to the volume
of 10 ml volumetric flask with 1% (v/v) HNO3 and high purity
deionized water. Afterwards, the concentrations of Cr, Fe, Mn,
Al, Cd, Cu, Zn, and Ni were determined by inductively coupled
plasma atomic emission spectrometry (ICP-AES) and instrument
parameters, i.e., high frequency power, cooling gas velocity and
atomizer hamber gas pressure were set as 1.2 kW, 18 L/min and
45 psi, respectively. The concentration of Se was determined using
atomic fluorescence spectrometry (AFS) and the process of sam-
ple preparation is slightly different. That is, the digested samples
were diluted to volume by 5% (v/v) HCl instead of HNO3, and
then, 2 ml concentrated HCl and 1 ml potassium ferricyanide was
added. All the 122 samples are divided into two equal parts
and the latter for validation. It should be pointed out that in the
original paper [35], the author focused on investigating the distri-
bution of trace elements and also provided a linear discriminant
analysis, but no independent test set was set aside for valida-
tion.
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Table 1
Correlative coefficient between different pairs of trace elements.

Cr Fe Mn Al Cd Cu Zn Ni Se

Cr 1.00 0.14 0.20 0.07 0.24 0.34 0.41 0.61 0.43
Fe 1.00 0.53 0.66 0.25 0.26 0.12 0.18 0.09
Mn 1.00 0.22 0.06 0.05 0.02 −0.06 −0.21
Al 1.00 0.09 −0.03 0.06 −0.05 −0.13
Cd 1.00 0.59 0.60 0.59 0.25

F
l
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.2. Software and computation

All of the calculations were performed with Matlab ver-
ion 7.0 under Windows Xp, based on Pentium IV with 256
AM. Both Adaboost and FDA were performed by the Statis-
ical Pattern Recognition toolbox (http://cmp.felk.cvut.cz/cmp/
oftware/stprtool/index.html).

. Results and discussion

.1. Preliminary analysis

It is well-known that correlation, often measured as a correla-
ion coefficient, can indicate the strength of a linear relationship
etween two random variables. Therefore, the correlation coeffi-
ient of each pair of trace elements is first calculated and given
n Table 1, suggesting that there exist no obvious linear correla-
ions between elements. For healthy group and cancer group, the
escriptive statistics including mean, minimum, maximum, stan-
ard deviation and RSM (the ratio of standard deviation to mean)
re summarized in Table 2. It can be observed from Table 2 that
here are some differences of elemental concentration between two
roups and for most of the elements, the concentrations are rela-

ively dispersive. On the average, the concentrations of Fe, Mn and
l for healthy group are higher than those for cancer group, while

he concentrations of other elements are higher in the urine of can-
er group. To get an overview of data distribution, Fig. 1 gives the
requency histogram and corresponding estimated probability dis-

ig. 1. The frequency histogram and corresponding estimated probability distribution o
ine). (For interpretation of the references to color in this figure legend, the reader is refer
Cu 1.00 0.49 0.69 0.30
Zn 1.00 0.60 0.56
Ni 1.00 0.50

tribution of trace element concentrations for both healthy group
and cancer group. Obviously, in most cases, the distributions are not
normally distributed but remain considerable overlap. Of these ele-
ments, the concentrations of Ni are significantly different between
the healthy and cancer groups; it seems that the concentration of
nickel can be used as a simple criterion to discriminate the healthy
and cancer groups. However, similar to the calibration in analyti-
cal chemistry, to use only one element/variable may be dangerous
for a diagnosis and fail to achieve an acceptable accuracy. For this
reason, more effort is paid to construct a better classifier instead of
selecting variables in this study.

In order to obtain preliminary indications on the possible clus-

tering of the urine samples in the two groups, principal components
analysis (PCA) was used. Using sample set partitioning described
before, we generated two kinds of operating cases: case A and case
B. In case A, the test set consisted of 47 healthy subjects and 14 lung

f trace element contents for healthy group (red line) and lung cancer group (blue
red to the web version of the article.)

http://cmp.felk.cvut.cz/cmp/software/stprtool/index.html
http://cmp.felk.cvut.cz/cmp/software/stprtool/index.html
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Table 2
Descriptive statistics of trace element concentration in urine (ng/ml).

Healthy Lung cancer

Minimum Maximum Mean S.D. RSM Minimum Maximum Mean S.D. RSM

Cr 3.1 106 21.2 16.8 0.79 18 84.9 44.6 14.4 0.32
Fe 54.8 1205 368.3 242.1 0.66 164.6 487.0 309.3 85.0 0.27
Mn 1.0 39.5 8.2 7.0 0.85 1.4 17.8 4.7 3.2 0.68
Al 54.5 8.3.3 239.4 154.8 0.64 88.4 303.6 189.1 58.9 0.31
Cd 1.2 27.1 7.1 5.1 0.71 5.5 15.9 10.1 2.7 0.26
Cu 1.2 205.5 34.7 32.1 0.92 32.1 121 73.3 24.0 0.32
Zn 101.3 2524.0 512.3 531.2 1.03 0.3 4526.0 1519.8 1194.8 0.78
Ni 5.1 59.7 22.3 10.9 0.49 20.5 87.9 59.4 18.2 0.31
Se 2.0 11.6 5.2 2.4 0.14 4.1 34.0 15.0 8.3 0.55

Fig. 2. Score plot of the first two components (PC1 and PC2) for both the training set
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Fig. 3. (a) The curves of MCR (misclassified rate) versus the ensemble size; (b) the
predictive performance of the final ensemble classifier on the test set for case A.
(Note: Class label “1” signifies health while “2” denotes cancer patient; only three
samples of healthy people are misclassified).
nd the test set (The red (1–3) and blue (4–5) points marked with circle denote the
isclassified samples for case A and for case B, respectively). (For interpretation of

he references to color in this figure legend, the reader is referred to the web version
f the article.)

ancer subjects while in case B, the test set consisted of 48 healthy
ubjects and 13 lung cancer subjects. In fact, the training set of case
was exactly the test set of case B while the training set of case B
as the test set of case A. That is to say, case B can be obtained only

y exchanging case A’s training set and test set, vice versa. Taking
ase A as an example, Fig. 2 shows the score plot of the first two
omponents (PC1 and PC2) for both the training set and the test
et. As it can be seen that there exist two clusters corresponding to
he two groups; also, the information contained in both the training
et and the test set is similar. However, the points associated to can-
er group and healthy group spread along PC1 and PC2 directions,
espectively, indicating that using PC1 and PC2 is not enough to sat-
sfactorily separate the two kinds of samples. Introducing more PCs
as also been tested but failed to improve the results. Taking into
ccount that FDA is a classic classification algorithm, we have also
ttempted to use it to the task so as to provide a reference. As shown
ater, FDA has also failed to provide a model with good performance,

hich is just the reason that makes us move on to Adaboost. These
vidences indicate that the classification task is not easy.

.2. Classification based on Adaboost

Based on the Adaboost strategy using decision stump for training
eak classifiers, we built a series of ensemble classifiers with differ-
nt ensemble size, i.e., the number of weak classifiers. Figs. 3 and 4
how the curves of MCR (misclassified rate) versus the ensemble
ize and the predictive performance of the final ensemble classi-
er on the test set for case A and for case B, respectively. It can be
oticed that, for each case, with the increase of ensemble size, the
Fig. 4. (a) The curves of MCR (misclassified rate) versus the ensemble size; (b) the
predictive performance of the final ensemble classifier on the test set for case B.
(Note: Class label “1” signifies health while “2” denotes cancer patient; only three
samples of healthy people are misclassified).

MCR values for both the training set and the test set drop quickly.
For case A, when integrating only the first eight weak classifiers,

the MCR for the training set achieves to zero while the MCR for the
test set reaches a minimum (4.9%) and afterward ascend slightly,
indicating that the ensemble size should be controlled. For case
B, when the MCR for the training set achieve to zero, the ensem-
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Table 3
Performance measures of optimal classifiers associated to both Adaboost and FDA.

Case A (48 + 13) Case B (47 + 14)

Sensitivity Specificity Accuracy Sensitivity Specificity Accuracy

FDA 92.3% 89.6% 90.1% 85.7% 89.1% 88.5%
Adaboost 100.0% 93.8% 95.1% 100.0% 95.7% 96.7%

Table 4
The five samples of healthy people misclassified as lung cancer patients.

No. Cr Fe Mn Al Cd Cu Zn Ni Se

1 32.7 107.8 15.8 535.8 13.5 93.8 1994.0 51.5 2.5
2 28.5 967.0 18.3 434.2 10.3 66.2 1010.0 59.7 3.7
3 16.1 228.9 16.7 99.8 18.2 76.8 1530.0 48.9 6.5
4 20.8 161.0 5.5 194.4 23.3 65.5 1394.0 31.1 5.6
5
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19.1 411.7 14.9 83.2 13.9 77.3 1666.0 40.1 4.2

ote: No. 1–3 samples corresponds to case A and No.4–5 samples correspond to case
.

le classifier corresponds to the first 10 weak classifiers and also
hows the optimal predictive performance, i.e., the MCR for the test
et reaches the minimum (3.3%). It seems that in Adaboost, the opti-
al ensemble size may be dependant on the training set, but the

xtent is relatively small due to the use of our especial scheme of
ample set partitioning that guarantees both the training set and
he test set have a similar information distribution. Obviously and

ore importantly, in either case, it is convenient to choose an opti-
al ensemble size, which is exactly the smallest size that makes
CR for the training set equal to zero, as shown in Figs. 3 and 4

igs. 3(a) and 4(a). These phenomena are consistent to the decla-
ation on the traits of Adaboost. The ensemble size T is the only
arameter to be tuned. Generally, as T increases, the training error
ecreases almost monotonically, even to zero. However, the test
rror often behaves differently. It may decrease initially but usu-
lly increases after a certain number of steps. This phenomenon is
alled over-fitting. Thus, it is also necessary to control the ensem-
le size, i.e., the number of weak classifiers. However, in the present
ask, it seems that over-fitting can easily be avoided by selecting the
ptimal ensemble size, only according to the MCR for the training
et.

The optimal ensemble classifiers for both cases (consisting of
he first 8, 10 weak classifiers, respectively) have been evaluated
n the corresponding test sets, by means of three measures, i.e.,
ensitivity, specificity and accuracy. Sensitivity is given as the ratio
f TP/(TP + FN), where TP and FN are the number of the true pos-
tive (cancer) and false negative results, respectively. Specificity is
iven by the ratio of TN/(TN + FP), where TN and FP are the num-
er of true negative (healthy) and false positive results. Accuracy

s given by the ratio of (TP + TN)/(TP + FP + TN + FN) and equal to 1-
CR. The values of the three measures associated to both Adaboost

nd FDA are summarized in Table 3. When applying FDA, a few pre-
rocessing methods such as log-transform and auto-scaling were
lso attempted but failed to obviously reduce the MCR, especially
n the test set, and therefore, the results are not reported. It is clear
rom Table 3 that in either case A or case B, Adaboost always leads to
etter performance compared to FDA with a single model. Further-
ore, Adaboost is less sensitive to the composition of the training

et. Such a finding is in accordance with the literature, which claims
hat an ensemble classifier is often more accurate and robust than
single classifier, even its individual members [37,38]. As shown in
igs. 3(b) and 4(b), of 61 test samples, all cancer patients are cor-

ectly classified and only three healthy peoples are misclassified in
ase A and only two healthy peoples are misclassified in case B (also
arked by circles in Fig. 2). Table 4 gives the composition of the five

amples, whose concentrations of Cu and Zn seem to be closer to
hose of cancer group, thus being difficult to classify.
Fig. 5. The bar plot of weighted errors of weak classifiers (upper) and the curve of
error bound versus ensemble size (lower) corresponding to the optimal ensemble
classifier containing eight weak classifiers for case A.

To obtain a proof on the validity of Adaboost, we have taken case
A as an example to check the weighted errors and error bounds of
the first eight weak classifiers corresponding to the optimal case, as
shown in Fig. 5. Evidently, compared to the first two weak classifiers,
the successive ones always take on higher WeightedErr values. This
is because they have paid more attention on those “hard” samples
to produce the final ensemble classifier. It is just by this means
that the superiority of Adaboost can be brought into play. On the
other hand, the ErrBound curve can imply the risk of over-fitting to
some extent. If the ErrBound values are high, the risk of over-fitting
is correspondingly small, vice versa, implying the importance of
controlling the ensemble size.

5. Conclusion

It is widely recognized that the primary requirement for suc-
cessful treatment of lung cancer is early detection. By the time
symptoms are present, it is often too late to facilitate a full care.
Therefore, there is a concern to develop the methods for early diag-
nosis. This study demonstrates that the Adaboost using decision
stump as the algorithm of weak classifiers, in combination with
trace element analysis of urine, could be a potential tool for diag-
nosing early lung cancer in clinical practice.
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